Symmetric Squares, Spherical Designs, and Lattice Minima

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Frequency Squares and Affine Designs

The known methods for constructing complete sets of mutually orthogonal frequency squares all yield one of two parameter sets. We show that almost all these constructions can be derived from one basic design theory construction.

متن کامل

New spherical 4-designs

Hardin, R.H. and N.J.A. Sloane, New spherical 4-designs, Discrete Mathematics 106/107 (1992) 255-264. This paper gives a number of new spherical 4-designs, and presents numerical evidence that spherical 4-designs containing n points in k-dimensional space with k G 8 exist precisely for the following values of n and k: n even and 22 for k = 1; n 2 5 for k = 2; n = 12, 14, >I6 for k=3;n~2Ofork=4;...

متن کامل

On Tight Spherical Designs

Let X be a tight t-design of dimension n for one of the open cases t = 5 or t = 7. An investigation of the lattice generated by X using arithmetic theory of quadratic forms allows to exclude infinitely many values for n.

متن کامل

Irreducibility of Tensor Squares, Symmetric Squares and Alternating Squares

We investigate the question when the tensor square, the alternating square, or the symmetric square of an absolutely irreducible projective representation V of an almost simple group G is again irreducible. The knowledge of such representations is of importance in the description of the maximal subgroups of simple classical groups of Lie type. We show that if G is of Lie type in odd characteris...

متن کامل

New quasi-symmetric designs constructed using mutually orthogonal Latin squares and Hadamard matrices

Using Hadamard matrices and mutually orthogonal Latin squares, we construct two new quasi-symmetric designs, with parameters 2 − (66, 30, 29) and 2− (78, 36, 30). These are the first examples of quasisymmetric designs with these parameters. The parameters belong to the families 2− (2u2−u, u2−u, u2−u−1) and 2− (2u2 +u, u2, u2−u) which are related to Hadamard parameters. The designs correspond to...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Algebra

سال: 2001

ISSN: 0021-8693

DOI: 10.1006/jabr.2000.8713